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Measurements of thermophysical properties of
liquid metals relevant to Marangoni effects

B y I. Egry, M. Langen and G. Loh ö fer
Institut für Raumsimulation, DLR, 51170 Köln, Germany

Marangoni convection is caused by a gradient in the surface tension along a free liquid
surface. The dimensionless Marangoni number, which controls the strength of this
convection, contains additional thermophysical parameters. For liquid metals, these
quantities are best measured under containerless conditions using electromagnetic
levitation and non-contact diagnostic tools. In microgravity, small electromagnetic
fields are sufficient to position a liquid sample. Some experiments can only be per-
formed in such an environment, most others greatly benefit from microgravity and
lead to results of higher precision. This paper reports on both terrestrial and micro-
gravity measurements of thermophysical properties of undercooled liquid metals,
including specific heat, density, surface tension, viscosity and electrical conductivity.

Keywords: oscillating drop technique; electromagnetic levitation; surface tension;
density; electrical conductivity; microgravity

1. Introduction

Marangoni convection is caused by a gradient in the surface tension γ along a free
liquid–vapour interface. This driving force must overcome the resistance of the fluid
to flow, characterized by the viscosity η. The dimensionless Marangoni number, Ma,
expresses this competition. It is defined as

Ma = (Lsρcpδγ)/(λη), (1.1)

where Ls is a characteristic length, ρ is the density, cp is the specific heat, δγ is the
difference in surface tension along Ls, and λ is the thermal conductivity. In order to
accurately predict the flow pattern, the thermophysical parameters entering into the
definition of the Marangoni number must be precisely known. This is a formidable
task, because it involves the measurement of five different parameters. A particular
difficulty arises from the determination of δγ. In most cases, this difference is due to
a temperature gradient δT along Ls, and it can therefore be written as

δγ = ∂γ/∂T δT. (1.2)

Therefore, the temperature coefficient of the surface tension has to be determined,
which involves the differentiation of the primarily determined surface tension γ(T )
with respect to temperature. Accurate results can only be obtained if a wide tem-
perature range is covered and the scatter of the original data points is small.

Inserting equation (1.2) into (1.1), we can separate external quantities from intrin-
sic material properties by writing

Ma = LsδT ma, ma = (ρcp∂γ/∂T )/(λη). (1.3)
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Figure 1. Surface tension of iron as a function of oxygen concentration at 1650 ◦C (after Keene
et al. 1982).

We are concerned with the determination of the specific Marangoni number, ma.
Once this quantity is known, Ma for a given experimental setup can be obtained
easily from equation (1.3). Note that ma can be positive or negative, depending
on the sign of ∂γ/∂T . The temperature coefficient ∂γ/∂T should be negative for
pure elements (with the possible exception of Ga) due to the decrease of structural
differences between liquid and gas with increasing temperature; note that, at the
critical temperature Tc, both phases become equal, and, consequently, their inter-
face disappears. However, for alloys, segregation effects may become dominant at
low temperatures, leading to a decrease of ∂γ/∂T with decreasing temperature and
thereby to a positive temperature coefficient.

Whereas reliable data exist for fluids which are liquid at, or slightly above, room
temperature, the situation is different for high-temperature melts, like liquid metals
with a melting temperature around 1000 ◦C, typically. At these high temperatures
‘everything reacts with everything’ (Mills & Brooks 1994), and it is difficult to find
a container that does not contaminate the specimen under investigation. To com-
plicate matters, surface tension is particularly sensitive to even small amounts of
impurities. As an example, the surface tension of iron is shown as a function of
oxgen concentration in figure 1 (Keene et al. 1982).

For liquid metals, electromagnetic levitation provides containerless processing
capabilities. An inhomogeneous RF electromagnetic field exerts a Lorentz force on
a metallic sample and lifts it against gravity. The ohmic losses of the induced eddy
currents in the sample heat, and eventually melt, the sample. If non-contact diag-
nostic tools can be developed which are compatible with electromagnetic levitation,
this combination is best suited for the study of liquid metals. Recently, considerable
progress has been made in this direction (Egry et al. 1993). Containerless process-
ing has the additional advantage that the liquid metals can be easily undercooled:
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due to the absence of container walls, the number of heterogeneous nucleation sites
is greatly reduced, and nucleation is delayed. There is, however, one shortcoming
of electromagnetic levitation: the electromagnetic fields not only lift and heat the
sample, but they also deform its shape and induce potentially turbulent flows in
the sample. These undesired side effects cannot be eliminated on Earth and can
only partially be accounted for by some extensive magnetohydrodynamic calcula-
tions (Cummings & Blackburn 1991; Suryanarayana & Bayazitoglou 1991; Bratz &
Egry 1995). For this reason, experiments under microgravity conditions are useful
and have been performed (Team TEMPUS 1996).

This paper reviews the non-contact experimental techniques available today in
combination with electromagnetic levitation. They allow us to measure all of the
thermophysical properties entering the Marangoni number, namely density, specific
heat, surface tension, viscosity, and, indirectly, thermal conductivity. A discussion of
the results obtained so far, including microgravity experiments, is also included.

2. Specific heat

The specific heat cp describes the temperature change of a body due to heat input
or heat loss:

mcp
dT
dt

= Pin − Pout, (2.1)

where m is the mass of the body and Pin and Pout are the power input and output,
respectively. In electromagnetic levitation, power is fed into the sample by induction.
The power absorbed by the sample is proportional to the power drawn by the levita-
tion coil. Once this coupling coefficient is known, the power absorbed by the sample
can be calculated from the power draw of the RF circuit. To determine the specif-
ic heat, the heat loss must also be known. This is most easily achieved in vacuum
conditions, where there are only radiative heat losses:

Pout = σSBAεT
4, (2.2)

where σSB is the Stefan–Boltzmann constant, A is the surface area of the specimen,
and ε is the total hemispherical emissivity. In terrestrial levitation, convective cooling
is always required to control and limit the sample temperature. The effect of the
cooling gas has to be taken into account in the heat balance (equation (2.1)), and,
if convection is present, the heat loss to the gas cannot be simply described by an
effective thermal conductivity. Therefore, the applicability of this method is limited
to microgravity experiments.

If the total hemispherical emissivity is known, the specific heat can be obtained
from cooling curves, i.e. Pin = 0. In such a case, cp is simply given by

cp = −σSBAε

m

T 4

dT/dt
. (2.3)

Unfortunately, in most cases, ε is not known. Nevertheless, the specific heat can be
determined through a modulation technique, developed by Fecht & Johnson (1991).
The heater power is modulated according to P (t) = Pω cos(ωt) resulting in a mod-
ulated temperature response ∆Tω of the sample. Temperature gradients inside the
sample relax quickly, due to the high thermal conductivity of metals. This relaxation
can be described by a relaxation time τint. On the other hand, relaxation to the equi-
librium temperature is governed by radiation under UHV conditions, and is therefore
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Figure 2. AC calorimetry on ZrNi alloy: power modulation and temperature response

slow. It can be described by a relaxation time τext. If the modulation frequency ω is
chosen such that 1/τext � ω � 1/τint, a simple relation for the temperature variation
can be derived:

∆Tω = Pω/(ωcp), (2.4)
from which cp can be determined.

In practice, the power input into the sample is controlled by a control voltage Uc:

Pin = αU2
c , (2.5)

where α is a constant characterizing the RF circuit including the sample. The control
voltage is modulated according to

Uc = U0 + Um cos(ωt), (2.6)

resulting in a power modulation at the sample:

Pin = α(U2
0 + 1

2U
2
m + 2U0Um cos(ωt) + 1

2U
2
m cos(2ωt)). (2.7)

The first term is the unmodulated RF power. It determines the equilibrium temper-
ature of the sample before modulation. As we can see from (2.7), the modulation
produces a periodic temperature response (third and fourth terms) superimposed
over an increase in the average sample temperature (second term). Equation (2.4)
can be applied to the third and fourth term separately. Figure 2 shows data taken
from an Ni24Zr76 sample flown on IML-2 (Team TEMPUS 1996) with the corre-
sponding heater control voltage plotted below.

Of course, specific heat data from liquid, and even undercooled metals, can also be
measured using drop calorimeters (Barth et al. 1993). The fundamental problem of
drop calorimetry is due to the fact that the specific heat is not measured directly, but
is obtained by differentiating the measured enthalpy with respect to temperature. To
discuss these measurements in any detail is outside the scope of the present article.
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Figure 3. Shape of a levitated silicon sample and fit with Legendre polynomials.

3. Density

Density measurements of levitated samples can be made using videography. In
terrestrial levitation, samples are not spherical, but slightly elongated due to the
action of gravity and the electromagnetic field. However, their static equilibrium
shape is still rotationally symmetrical around the vertical axis (parallel to the gravity
vector). Therefore, images are taken perpendicular to this axis, and the volume V of
a rotationally symmetrical body is calculated. The mass m of the sample is known;
it is weighed before and after the measurement. The density of the sample is then
obtained from

ρ = m/V. (3.1)

The images are taken at constant temperature and analysed off-line by a digital
image processing system. In a first step, the software detects the edge of the incan-
descent sample; then an average of approximately 100 images is performed to remove
the potentially asymmetrical dynamic surface oscillations. Finally, the shape of the
averaged image is fitted with a series of Legendre polynomials.

An example of such a fit is shown in figure 3.
Once the coefficients of this series expansion are known, the volume and hence the

density can be calculated. A detailed description of this algorithm has been given in
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Figure 4. Density of liquid silicon as function of temperature.

Gorges et al. (1996). Using this method, we have recently determined the density of
liquid silicon over a wide temperature range. The result is shown in figure 4.

This example shows that it is even possible to apply electromagnetic levitation to
semiconductors.

4. Surface tension and viscosity

(a ) Surface tension
The oscillating drop technique is an elegant way to measure both surface tension

and viscosity. It employs digital image processing for frequency analysis of surface
waves. The radius a of a droplet undergoes oscillations of the form

δal,m(ϑ, φ, t) ∝ Yl,m(ϑ, φ) cos(ωl,mt)e−Γl,mt. (4.1)

Here, Yl,m are spherical harmonics. The frequency ωl,m is related to surface tension,
while the damping Γl,m of the waves is due to viscosity. If the equilibrium shape
of the droplet is spherical, the simple formulae of Rayleigh and Kelvin can be used
to relate frequency ω and damping Γ of the oscillations to surface tension γ and
viscosity η, respectively. Rayleigh’s formula reads

ω2
R = 32

3 π(γ/m), (4.2)

while Kelvin derived the following expression:

ΓK = 20
3 π(aη/m), (4.3)

where m is the mass of the droplet and a is its radius. These two expressions relate
to the fundamental mode of oscillation, which corresponds to l = 2. For spherical
drops, frequencies and damping constants do not depend on m (|m| < 2). A spherical
shape is obtained only if the droplet is free of external forces. This situation is well
approximated in microgravity. Under terrestrial conditions, the above relations are
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Table 1. Surface tension of liquid transition and noble metals

γm (mN m−1) γT (mN m−1 K−1)︷ ︸︸ ︷ ︷ ︸︸ ︷
element this work Keene this work Keene

Fe 1870 1862 0.43 0.39
Co 1874 1881 0.3 0.34
Ni 1770 1796 0.33 0.35
Cu 1304 1330 0.22 0.23
Ag 908 925 0.18 0.21
Au 1149 1145 0.14 0.18

not valid and corrections have to be made for the external forces, namely gravity and
electromagnetic field. These corrections have been calculated recently (Cummings &
Blackburn 1991; Suryanarayana & Bayazitoglou 1991; Bratz & Egry 1995). They
take into account both the splitting of the peaks due to symmetry breaking, and
the shifting of the peaks due to magnetic pressure. For the Rayleigh formula the
correction reads

32
3 π(γ/m) = 1

5

∑
m

ω2
2,m − 1.9Ω2

tr − 0.3(Ω2
tr)
−4(g/a)2 (4.4)

Here, Ω2
tr is the mean of the translational frequencies of the sample in the potential

well of the levitation field, and g is the gravitational acceleration. It has been shown
that by applying the Cummings correction to surface tension data obtained by the
oscillating drop technique on Earth, a spurious mass dependence can be eliminat-
ed (Egry 1994). For gold, the value thus obtained agrees well with data obtained
using the sessile drop technique. In addition, Egry and coworkers have performed
microgravity experiments on gold and a gold–copper alloy (Egry et al. 1995). These
experiments clearly show a single peak in the oscillation spectrum which means that
the frequencies do not depend on m and, furthermore, they yield values for the sur-
face tension which are in excellent agreement with terrestrial data only if the latter
are corrected according to equation (4.4).

Using the oscillating drop method and applying the Cummings correction, we
have measured the surface tension of a number of liquid metals. The temperature
dependence of the surface tension of pure elements is conveniently described by

γ(T ) = γm − γT (T − Tm), (4.5)

where Tm is the melting temperature. Our results for noble and transition metals
are listed in table 1. For comparison, the recommended values of Keene (1993) are
also shown. Generally speaking, the agreement is excellent, with our data being
somewhat lower. This may be due to the fact that Keene’s compilation also contains
data obtained with the oscillating drop technique, but without Cummings correction.

So far, we have only discussed pure elements. In the case of alloys, the surface
tension depends on both temperature and concentration. Whereas the temperature
dependence is essentially linear, the concentration dependence is more complicated.
This is due to surface segregation effects. In alloys, the system uses its addition-
al degree of freedom to minimize its free energy. It can do so by segregating the
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Figure 5. Surface tension of the system Cu–Ni.

component with lower surface tension at the surface. This gain in energy is part-
ly compensated by loss of entropy, particularly at high temperatures. The surface
tension of alloys can be calculated from conventional bulk thermodynamics if the
mixing character is known. For the simplest case of an ideal solution, the following
explicit formula can be given:

γmix = γ1 − γ̃ ln{c1 + (1− c1) exp(∆γ/γ̃)}, (4.6)

where γ1 and c1 are the surface tension and concentration of component 1, respec-
tively. The difference between the surface tensions of the pure components is
∆γ = γ1 − γ2, and γ̃ = RT/f , where f is the surface area of one mole of either
species. Usually f is treated as a fitting parameter. More generally, the surface ten-
sion of alloys is calculated from Butler’s formula assuming either regular or subregular
solutions (Hajra et al. 1991). We have measured the surface tension of the simple
system Cu–Ni (Gorges 1996). It is a completely miscible system with a very simple
phase diagram. Therefore, one should expect ideal mixing behaviour. However, as
can be seen from figure 5, CuNi does not mix ideally, and it is best described by a
regular solution model.

(b ) Viscosity
In the case of viscosity, the Kelvin formula (equation (4.3)) is derived for force-

free samples under the assumption of purely laminar flow. Whereas the effect of
external forces on the equilibrium shape can be taken into account (as long as they
can be treated as a small perturbation), this is certainly not true when they cause
turbulent flow. In such a case, turbulence introduces additional damping which masks
the damping due to viscosity. This seems to be the case for both terrestrial and
microgravity electromagnetic levitation. Therefore, until now, no viscosity data could
be derived from the oscillating drop technique. If the levitation fields can be further
reduced, there is hope that this method can be applied to high-viscosity systems
such as PdCuSi or the recently discovered easy glass formers (Johnson 1996; Inoue
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et al. 1994). Corresponding microgravity experiments are under way: a reflight of the
TEMPUS facility is planned for SpaceHab mission MSL-1 in July 1997. Conventional
methods like the oscillating vessel or oscillating bob viscometers are difficult to use
for liquid metals and can have errors of up to 50% (Iida & Guthrie 1993). One way of
at least estimating viscosity values in the liquid and undercooled regime is provided
by the simple formula (Egry 1993):

γ/η = 15
16

√
kT/m. (4.7)

5. Conductivity

Finally, it is also possible to measure the electrical conductivity σ of levitated
droplets. This can be done using non-contact inductive methods. The basic idea is to
place a pickup coil around the sample and to measure the impedance Z of the system
(Lohöfer 1994). Being a complex quantity, Z contains information about the ratio
of the amplitudes of voltage and current, U0/I0, as well as their phase shift φ. Any
changes in the impedance can be attributed to changes of the sample. Two effects
can influence the impedance, namely the sample can either change its conductivity
or its shape. For conductivity measurements it is essential that these two effects can
be separated. It can be shown that for small skin depth δ and small deviations from
a spherical shape, this is indeed the case, if the pickup coil has a special geometry.
The skin depth δ is defined as

δ =
√

2/ωµ0σ. (5.1)

Here, ω is the oscillation frequency of the generator circuit, µ0 is the magnetic perme-
ability and σ is the conductivity. Therefore, small skin depth implies high frequency
or high conductivity. In terrestrial levitation experiments, the levitation coil cannot
be used as a pickup coil for impedance measurements and an additional measur-
ing coil has to be introduced. In microgravity experiments, the heating coil has the
required symmetry and can be used as pickup coil. In addition, the liquid sample is
spherical. For such a geometry, a simple relation can be derived between U0/I0 and
δ, which allows the determination of the conductivity. It reads

δ =
a

2

(
1−

√
1− 4

{
A

U0/I0
−B

})
. (5.2)

A and B are two constants characterizing the empty coil and a is the radius of
the sample. During the SpaceHab mission IML-2, the electrical conductivity of a
Zr64Ni36 alloy was measured in the TEMPUS facility using the approach outlined
above. Figure 6 shows the result.

Presently, we are developing modified coil systems and an improved theory which
will allow us to measure the electrical conductivity of slightly deformed samples on
Earth.

To obtain the thermal conductivity λ, needed to complete the definition of the
specific Marangoni number ma, we have to use the Wiedemann–Franz law which
relates thermal and electrical conductivity (Iida & Guthrie 1993):

λ/σ = LT, (5.3)

where L is the Lorenz number: L = 2.45× 108 V2 K−2. The Wiedemann–Franz law
is known to hold well for metals at high temperatures.
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Figure 6. Electrical resistivity of Zr64Ni36 in the solid and liquid phase.

6. Conclusion

The measurement of all thermophysical properties determining the Marangoni
number is a difficult task, in particular for liquid metals at high temperatures. A
promising strategy is to use containerless methods which avoid contamination of the
sample. Non-contact diagnostic tools are available or are being developed. With their
help, the database on thermophysical properties of liquid metals will be expanded and
consolidated. Some of the presented experiments rely on a microgravity environment
and can therefore not yet be performed routinely. With the advent of a permanent
space station, frequent experimental campaigns should become possible improving
the accuracy and fidelity of the data.
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Discussion
J. C. Earnshaw (Department of Pure and Applied Physics, University of Belfast,
UK). The elegant and non-invasive methods outlined in this paper promise very clean
data on thermophysical properties of liquid metals. I am, however, somewhat con-
cerned about certain effects which may influence the values of viscosity determined
from the damping of the oscillations of a liquid metal drop.

Simulations have suggested that density oscillations exist at the surface of a liquid
metal, reflecting the variation of the conduction electron density through the transi-
tion zone (D’Evelyn & Rice 1981). Such a layered structure at a liquid metal–vapour
interface, extending some few atomic layers into the bulk, has been confirmed by X-
ray reflectivity studies (Sluis & Rice 1983; Magnussen et al. 1995). Such a structure
could act as an interfacial molecular film, supporting dilatational surface waves. Such
dilatational modes would couple to the capillary modes Dr Egry observed; the main
effect would be to increase the damping of the capillary modes (Lucassen-Reynders
& Lucassen 1969; Kramer 1971). Indeed light scattering studies of thermally excited
capillary waves on the clean surface of Hg show such increased damping (Kolevson,
personal communication). The expected effects are shown in figure 7 for capillary
waves of wave number q = 10 cm−1 (comparable to those in experiments by Dr Egry)
on a planar Hg–vacuum interface. The considerable increase in the wave damping for
non-zero dilatational elastic moduli is apparent. While the theoretical formulation is
more complex for oscillations of spherical droplets (Sparling & Sedlak 1989) the two
surface modes couple similarly in this case also, again leading to increased capillary
mode damping. This suggests that viscosities deduced from the onserved damping
values might be significantly and systematically overestimated. The changes in the
capillary mode frequency are orders of magnitude less than those in the damping
(see figure 7), so that estimates of surface tension should be relatively unaffected.

I. Egry. Professor Earnshaw makes a very important remark about the interpreta-
tion of the damping of capillary waves. He points out that the damping may be due to
other mechanisms than viscosity, in particular coupling to dilatational surface waves
may lead to damping of the capillary waves. Strong damping of thermally excited
capillary waves observed on a clean planar surface of liquid Hg was interpreted as
being due to such an effect, assuming that such a surface layer is an intrinsic property
of a liquid metal and would exist even on clean surfaces.

In the experiments discussed in our paper, the damping of mechanically excited
oscillations of a liquid drop is observed. If surface dilatational waves existed on the
surface, it is very likely that a similar mode-coupling as in the planar case would lead
to an enhanced damping. However, this is not the case experimentally. Recently, we
have evaluated our microgravity experiment on the eutectic Pd78Cu6Si16 alloy, using
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Figure 7. The capillary wave frequency (ω) and damping (Γ ) for capillary waves of q = 10 cm−1

on a Hg–vacuum interface as a function of the dilatational elastic modulus ε. The damping
varies by a factor of over 10, whereas the variations of the frequency are less than 0.7% of the
value for ε = 0.

the simple formula Γ = 20
3 π(aη/m) (equation (4.3) of our paper), which assumes

damping by viscosity only. For the viscosity at the eutectic temperature T = 760 ◦C,
our preliminary analysis yields η = 49 mPa s (Egry et al. 1998). Previously, the
viscosity of Pd78Cu6Si16 was measured by Lee et al. (1991). They obtained η =
61 mPa s at the same temperature. Our value is of the same order of magnitude, but
lower than theirs. An additional damping due to the coupling to surface dilatational
waves, seems therefore negligible. More work, both theoretical and experimental, is
needed to clarify this puzzle.
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